[TJ-V Calobotioan] iofos] @

-‘}7} (X*l"\/*l’l /Z@?’; ‘f%,) S <

!

1 "/0" % '; a : -

R —

%ﬁﬂwd er poss etor

We coamndoder
3.;4«4#4“;‘,&&¢«A "‘4000o’[-+ qoooz'((_‘__cho_b_({%_}_.

e g7
1L‘C(ozno'/ + oo (fy'f- C(oonZ'y-CfC-}----

S —
Tuia do Miceor w4y d ijel

We sepncly &.,,— et T — ,,&aM?L M/% wm? .e%:

J/MW'{"
()
+3,7/ s L - 6(’0900 { + Aoooi .Cf(l)"' q 000 73(0 w3 =5
N
+3/ /mtsc. = losoo - |+ dovo) 'C/()4' a/c)oo"»b{b(l)i B
(Wb oo ef— Covomictieed Ly

)

T Wila et o% pf%aﬁp’m ceent be q—thr\uéé"(alm

AMOJTJF 4?“""“‘ wy

[Y(:) ‘{3(1) \/) (Lf 7)“) N \ A 000 Tg \/(0\
() () (Y 2 t
l L(((/({Lfy)() - % ooo | 737()

A 0003

U

H [——,

{(po0 © A 2SS =
L_’w =

Tl"l}“ 12 am ¢& ;LWJM'//(

0’*"""’“ 4 £ anL/awq. H‘C“M
&Z P W ZZ‘% SV D.

(2)

2.6 Singular Value Decomposition 59

2.6 Singular Value Decomposition

There exists a very powerful set of techniques for dealing with sets of equations
or matrices that are either singular or else numerically very close to singular. Inmany
cases where Gaussian elimination and LU decomposition fail to give satisfactory
results, this set of techniques, known as singular value decomposition, or SVD,
will diagnose for you precisely what the problem is. In some cases, SVD will
not only diagnose the problem, it will also solve it, in the sense of giving you a
useful numerical answer, although, as we shall see, not necessarily “the” answer
that you thought you should get.

SVD is also the method of choice for solving most linear least-squares problems.
We will outline the relevant theory in this section, but defer detailed discussion of
the use of SVD in this application to Chapter 15, whose subject is the parametric
modeling of data.

SVD methods are based on the following theorem of linear algebra, whose proof
is beyond our scope: Any M x N matrix A whose number of rows M is greater.than
or equal to its number of columns N, can be written as the product of an M x N
column-orthogonal matrix U, an N x N diagonal matrix W with positive or zero
elements (the singular values), and the transpose of an N x N orthogonal matrix V.
The various shapes of these matrices will be made clearer by the following tableau:

w1
w2

wN

(2.6.1)

The matrices U and V are each orthogonal in the sense that their columns are
orthonormal,

<k<
iZU.-kU.-,. =6 1Cn<N (2.6.2)
N
1<k<N
2 VitVin =6 1 2 C N (2.6.3)

(D

60 Chapter 2. Solution of Linear Algebraic Equations

or as a tableau,

(2.6.4)

Since V is square, it is also row-orthonormal, V - V7' = 1.

The SVD decomposition can also be carried out when M < N. In this case
the singular values w; for j = M +1,..., N are all zero, and the corresponding
columns of U are also zero. Equation (2.6.2) then holds only for k,n < M.

" The decomposition (2.6.1) can always be done, no matter how singular the
matrix is, and it is “almost” unique. That is to say, it is unique up to (i) making
the same permutation of the columns of U, elements of W, and columns of V (or
rows of VT), or (ii) forming linear combinations of any columns of U and V whose
corresponding elements of W happen to be exactly equal. An important consequence
of the permutation freedom is that for the case M < N, a numerical algorithm for
the decomposition need not return zero w;’s for j = M +1,...,N; the N - M
zero singular values can be scattered among all positions j = 1,2,..., N.

At the end of this section, we give a routine, svdcmp, that performs SVD on
an arbitrary matrix A, replacing it by U (they are the same shape) and giving back
W and V separately. The routine svdcmp is based on a routine by Forsythe et
al. [1], which is in turn based on the original routine of Golub and Reinsch, found, in
various forms, in [2-4] and elsewhere. These references include extensive discussion
of the algorithm used. As much as we dislike the use of black-box routines, we are
going to ask you to accept this one, since it would take us too far afield to cover
its necessary background material here. Suffice it to say that the algorithm is very
stable, and that it is very unusual for it ever to misbehave. Most of the concepts that
enter the algorithm (Householder reduction to bidiagonal form, diagonalization by
QR procedure with shifts) will be discussed further in Chapter 11.

If you are as suspicious of black boxes as we are, you will want to verify yourself
that svdcmp does what we say it does. That is very easy to do: Generate an arbitrary
matrix A, call the routine, and then verify by matrix multiplication that (2.6.1) and
(2.6.4) are satisfied. Since these two equations are the only defining requirements
for SVD, this procedure is (for the chosen A) a complete end-to-end check.

Now let us find out what SVD is good for.

()

676 Chapter 15. Modeling of Data

Solution by Use'of Singular Value Decomposition

In some applications, the normal equations are perfectly adequate for linear
least-squares problems. However, in many cases the normal equations are very close
to singular. A zero pivot element may be encountered during the solution of the
linear equations (e.g., in gaussj), in which case you get no solution at all. Or a
very small pivot may occur, in which case you typically get fitted parameters a
with very large magnitudes that are delicately (and unstably) balanced to cancel out
almost precisely when the fitted function is evaluated.

Why does this commonly occur? The reason is that, more often than experi-
menters would like to admit, data do not clearly distinguish between two or more of
the basis functions provided. If two such functions, or two different combinations
of functions, happen to fit the data about equally well — or equally badly — then
the matrix [a], unable to distinguish between them, neatly folds up its tent and
becomes singular. There is a certain mathematical irony in the fact that least-squares
problems are both overdetermined (number of data points greater than number of
parameters) and underdetermined (ambiguous combinations of parameters exist);
but that is how it frequently is. The ambiguities can be extremely hard to notice
a priori in complicated problems.

Enter singular value decomposition (SVD)! This would be a good time for you
to review the material in §2.6, which we will not repeat here. In the case of an
overdetermined system, SVD produces a solution that is the best approximation in
the least-squares sense, cf. equation (2.6.10). That is exactly what we want. In
the case of an underdetermined system, SVD produces a solution whose values (for
us, the ax’s) are smallest in the least-squares sense, cf. equation (2.6.8). That is
also what we want: When some combination of basis functions is irrelevant to the
fit, that combination will be driven down to a small, innocuous, value, rather than
pushed up to delicately canceling infinities.

In terms of the design matrix A (equation 15.4.4) and the vector b (equation
15.4.5), minimization of x? in'(15.4.3) can be written as

find a thatminimizes =@ x?=|A-a—b? (15.4.16)

Comparing to equation (2.6.9), we see that this is precisely the problem that routines
svdcmp and svbksb are designed to solve. The solution, which is given by equation
(2:6.12), can be rewritten as follows: If U and V enter the SVD decomposition
of A according to equation (2.6.1), as computed by svdcmp, then let the vectors
Ug) i = 1,..., M denote the columns of U (each one a vector of length N); and
let the vectors V;);4 = 1,... , M denote the columns of V (each one a vector
of length M). Then the solution (2.6.12) of the least-squares problem (15.4.16)
can be written as

M (Uy-b\ .
a=)y_ o) Vo (15.4.17)

where the w; are, as in §2.6, the singular values calculated by svdcmp.
Equation (15.4.17) says that the fitted parameters a are linear combinations of
the columns of V, with coefficients obtained by forming dot products of the columns

)

R R AT

15.4 General Linear Least Squares 677

of U with the weighted data vector (15.4.5). Though it is beyond our scope to prove
here, it turns out that the standard (loosely, “probable”) errors in the fitted parameters
are also linear combinations of the columns of V. In fact, equation (15.4.17) can
be written in a form displaying these errors as

M
U -b 1 1
a= [Zl (—w‘. ,) V(i)} + w—IV(l) termd EV(M) (15.4.18)
2

Here each + is followed by a standard deviation. The amazing fact is that,
decomposed in this fashion, the standard deviations are all mutually independent
(uncorrelated). Therefore they can be added together in root-mean-square fashion.
What is going on is that the vectors V() are the principal axes of the error ellipsoid
of the fitted parameters a (see §15.6).

It follows that the variance in the estimate of a parameter a j is given by

M M o, \2
o?(a) =) %[V(.-)]? =) (VL) (15.4.19)

i=1 1 = \ Wi

whose QSult‘ should be identical with (15.4.14). As before, you should not be
surprised at the formula for the covariances, here given without proof,

M ViVee
Cov(ajar) =Y (#2’“) (15.4.20)
i=1 L]

ot v,

We introduced this subsection by noting that the normal equations can fail
by encountering a zero pivot. We have not yet, however, mentioned how SVD
overcomes this problem. The answer is: If any singular value w; is zero, its
reciprocal in equation (15.4.18) should be set to zero, not infinity. (Compare the
discussion preceding equation 2.6.7.) This corresponds to adding to the fitted
parameters a a zero multiple, rather than some random large multiple, of any linear
combination of basis functions that are degenerate in the fit. Itis a good thing to do!

Moreover, if a singular value w; is nonzero but very small, you should also
define its reciprocal to be zero, since its apparent value is probably an artifact of
roundoff error, not a meaningful number. A plausible answer to the question “how
small is small?” is to edit in this fashion all singular values whose ratio to the
largest singular value is less than N times the machine precision e. (You might
argue for /N, or a constant, instead of N as the multiple; that starts getting into
hardware-dependent questions.)

There is another reason for editing even additional singular values, ones large
enough that roundoff error is not a question. Singular value decomposition allows
you to identify linear combinations of variables that just happen not to contribute
much to reducing the x? of your data set. Editing these can sometimes reduce the
probable error on your coefficients quite significantly, while increasing the minimum
x? only negligibly. We will learn more about identifying and treating such cases
in §15.6. In the following routine, the point at which this kind of editing would
occur is indicated.

Generally speaking, we recommend that you always use SVD techniques instead
of using the normal equations. SVD'’s only significant disadvantage is that it requires

77\

VIO WSV INAPIONIE s wre serwamwiers T o ——

an extra array of size N X M to store the whole design matrix. This storage
is overwritten by the matrix U. Storage is also required for the M x M matrix
V, but this is instead of the same-sized matrix for the coefficients of the normal
equations. SVD can be significantly slower than solving the normal equations;
however, its great advantage, that it (theoretically) cannot fail, more than makes
up for the speed disadvantage. ,

In the routine that follows, the matrices u,v 4nd the vector w are input as
working space. The logical dimensions of the problem are ndata data points by ma
basis functions (and fitted parameters). If you care only about the values a of the
fitted parameters, then u, v,w contain no useful information on output. If you want
probable errors for the fitted parameters, read on.

#include "nrutil.h”
#defifie TOL 1.0e-5

void svdfit(float x[]1, float y[], float sig[], int ndata, float a[], int ma,

float *+u, float *+v, float w[], float #*chisq, !

void (#funcs)(float, float [], int))
Given a set of data points x[1..ndata],y[1..ndata] with individual standard deviations
sig[1. .ndatal, use x* minimization to determine the coefficients a[1..ma] of the fit-
ting function y = Y, a; x afunc;(z). Here we solve the fitting equations using singular
value decomposition of the ndata by ma matrix, as in §2.6. Arrays u{l..ndata] [1..ma];
v[1..mal[1..ma], and w[1..ma] provide workspace on input; on output they define the
singular value decomposition, and can be used to obtain the covariance matrix. The pro-
gram returns values for the ma fit parameters a, and x2, chisq. The user supplies a routine
funcs(x,afunc,ma) that returns the ma basis functions evaluated at £ = x in the array
afunc(1..ma].
{

void svbksb(float #+*u, float w[], float **v, int m, int n, float b[],

float x[1); '

void svdcmp(float *#a, int m, int n, float w(], float #**v);

int §,1i;

float wmax,tmp,thresh,sum,*b,*afunc;

b=vector(l,ndata);
afunc=vector(i,ma); [
for (im1;i<=ndata;i++) { Accumulate coefficients of the fitting ma-
(*#funcs) (x[1] ,afunc,ma); trix.
tmp=1.0/s8igli]);
for (j=1;j<=ma;j++) ulil [j1=afunc(j]l*tmp;
b(i]=y[i]*tmp; .

svdcmp(u,ndata,ma,w,v); Singular value decomposition.
wmax=0.0; Edit the singular values, given TOL from the
for (j=1;j<=ma;j++) . #define statement, between here ...
if (w(j] > wmax) wmax=w(j];
thresh=TOL*wmax;
for (J=1;j<=ma;j++)
if (w[j] < thresh) w[j]1=0.0; ...and here.
svbksb(u,w,v,ndata,ma,b,a);
*chisq=0.0; Evaluate chi-square.
for (i=1;i<=ndata;i++) {
(*funcs) (x[1] ,afunc,ma) ;
for (sum=0.0,j=1;j<=ma;j++) sum += a[j]+afunc(j];
‘#chisq += (tmp=(y([i]-sum)/sig(i],tmp*tmp);
}
free_vector(afunc,1,ma);
free_vector(b,1,ndata);

€N

