BigBite Optics #6

Matrix elements "[TgPh|FpPh]" and "[TgTh|x]"

I am still working on the matrix elements for TgPh and TgTh. I am working on my second iteration. I have used my best guess from last week, put it into the BB matrix and re-done the whole procedure. Now I can see more holes and each hole contains more events than before. This gives us opportunity to find better matrix elements.




Current results:

My next good optics matrix has the following form:
[matrix]
t 1 0 0  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00   0.0000E+00
y 1 0 0  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00   0.0000E+00
p 1 0 0  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00   0.0000E+00

D 0 0 0  -0.0062343  -0.9545440  1.13910000  0.0000E+00  0.0000E+00  0.0000E+00   0.0000E+00
D 1 0 0  3.39098000  -7.6819500  7.76604000  0.0000E+00  0.0000E+00  0.0000E+00   0.0000E+00
D 2 0 0  11.7304000  -19.230500  21.1691000  0.0000E+00  0.0000E+00  0.0000E+00   0.0000E+00
D 3 0 0  14.3041000  -8.6769400  3.53875000  0.0000E+00  0.0000E+00  0.0000E+00   0.0000E+00

T 0 0 0  -0.0144845  -0.5110110  0.0614577   0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00 
T 1 0 0  0.45228300  0.00349067  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00

P 0 0 0  -0.0085540  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00   0.0000E+00
P 0 0 1  0.99276700  0.19470400  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00   0.0000E+00
P 0 1 0  0.00000000  -0.1967680  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00   0.0000E+00
P 0 0 2  0.05101200  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00   0.0000E+00
P 0 1 1  -0.0299057  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00   0.0000E+00
P 0 2 0  -0.0249150  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00   0.0000E+00
P 1 0 1  -0.2368120  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00   0.0000E+00
P 1 1 0  0.22234200  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00   0.0000E+00


Y 0 0 0  -0.0321556  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00   0.0000E+00
Y 0 1 0  -1.0241000  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00   0.0000E+00
Y 0 2 0  -0.4919260  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00   0.0000E+00
Y 0 0 1  2.8077500  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00   0.0000E+00
Y 0 1 1  0.72023300  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00   0.0000E+00
Y 0 2 1  -0.7153320  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00   0.0000E+00
1.)

Next iteration:

2.) 3.)

However, I am still using Mathematica to calculate matrix elements. Unfortunately, now that I have more points and more matrix elements in my procedure, Mathematica fails to find a fit. It seems that minimization procedure that Mathematica uses requires more memory than I have in my computer. Therefore it crashes somewhere in the middle of the procedure. Please see figure below:

4.) 5.)

This is a clear sign that Mathematica is not a good choice. Since I am trying to avoid coding the whole fitting method from scratch, my next step will be to use Matlab as next choice to do my fitting procedure.
Last modified: 03/17/10