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Chapter 3

Overview of the Experiment

The experiment described in this thesis is the first experiment performed at the internal-
target facility of NIKHEF. The experimental setup allows the measurement of the (e, €'p)
and (e, €'d) reactions for tensor-polarized deuterium. In this chapter an overview of the
experiment is given, together with its major design considerations. We give a general
discussion of the kinematics, the electron storage ring and the principle of the internal
target. In order to optimize the detection system, a Monte Carlo code was written which
is briefly described in section 3.2. Furthermore, the results of a study of the spatial
distribution of the stored electron beam are presented in section 3.3. In section 3.4 the
design considerations for the polarized deuterium target will be discussed. A detailed
description of the polarized source, internal target, polarimeters and detection system

will be given in the next chapters.

3.1 Description of the Experiment

3.1.1 Planned measurements

The goal of our experiment was to measure the spin-dependent observables for both
2ﬁ(e, €'d) elastic and 2ﬁ(e, €'p) quasi-elastic scattering over a large kinematic range. The
general expression of the cross section for polarized deuteron electro-disintegration has
the following form [6]:

1 Jcos?; —1

o= Uo[l + V3 P. sinfy sin g iy + EPZZ (szo
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Here, ¢ 1s the unpolarized cross section, P, and P,, are the degree of vector and tensor

(3.1)

polarization defined as P, = ny —n_ and P., = 1 — 3ng, where ny, ng, and n_ are
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the relative populations of the various nuclear spin projections on the direction of the
magnetic holding field. The polarization direction of the deuteron is defined by the
angles 64 and ¢y in the frame where the z-axis is along the direction of the virtual photon
and the y-axis is defined by the vector product of the incoming and outgoing electron
momenta. For elastic scattering [3] the general expression of the cross section is as in
Eq. 3.1 apart from the T}y term which vanishes under the assumption of time reversal
invariance and one-photon exchange. The tensor analyzing powers T5; of the reaction are
a direct measure of the spin structure of the deuteron ground state and are particularly
sensitive to the D-wave admixture (see chapter 2). Our experiment focused on the tensor
analyzing powers T3; for both elastic scattering and quasi-elastic proton knock-out using

a H65 MeV electron beam.
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Figure 3.1: The available phase space for a 565 MeV electron beam. The lines indicate
kinematics with constant scattering angle (dotted) and constant missing mass (dashed).
The filled circle indicates the average kinematics of the experiment.

Fig. 3.1 shows the kinematically available phase space in the w - Q? plane for a
beam energy of 565 MeV. Lines indicate constant values of scattering angle (dotted) and
invariant mass (dashed). The average electron kinematics are indicated as a filled circle.

The small cross sections and the limited available luminosity define requirements for
the angular acceptances. The cross section for elastic electron-deuteron scattering ranges
from 107° to 10~'* (barn/sr) between Q*=0.05 and 0.6 (GeV/c)? [38]. Similarly, the
coincidence cross section for the exclusive quasi-elastic (e, €'p) reaction ranges from a
few pb/MeV/sr? to a few nb/MeV/sr? for missing momenta between p,,= 0 and 300

(MeV/c) [39]. The angular range of the scattered electron and recoil deuteron is shown
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Figure 3.2: Electron-deuteron elastic scattering angles for a 565 MeV beam (top).
Angles of the knock-out proton in quasi-elastic scattering for perpendicular kinematics
(bottom).

in Fig. 3.2 (top) for a beam energy of 565 MeV. The angular span of the knocked-out
proton is shown in Fig. 3.2 (bottom) as a function of p,,. In order to obtain significant
results within a reasonable amount of beam time, especially at large Q* for the elastic
channel or at high p,, for the inelastic channel, it is necessary to integrate over large
momentum and angular acceptances. In addition, the complete angular range of the
experiment should be measured simultaneously, which has the advantage of reducing
systematic errors associated with changes in detector angles. Therefore, it is imperative
to use large solid angle detectors with acceptances in the order of hundreds of msr.

The present experiment was carried out with a beam current of 80 mA and a target
thickness of 2 x 10'® 2H-cm™2 The electron detector had a solid angle of 180 msr
(A0 x A¢p = 424 x 424 mrad?) and was positioned at a central scattering angle of
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0. = 30°. The hadron detector had a 300 msr solid angle and positioned at a central

angle of 8,, = 80°. The average value of the transferred momenta was 0.2 (GeV/c)?,
while the missing momenta for the (e, €'p) reactions ranged from 0 - 250 MeV/c. The
target spin was oriented in directions parallel (8; ~0°) and perpendicular to (6, ~90°)

to the transferred momentum.

3.1.2 Overview of the Amsterdam Pulse Stretcher (AmPS)

MEA
N\

e

Figure 3.3: A schematic layout of the AmPS electron storage ring at NIKHEF. The
electrons from the accelerator MEA are injected in section I and can be extracted in
section E. The apparatus for our experiment is located at the Internal Target Facility
(ITF). Beam scrapers are installed in section S. Section C contains the 476 MHz cavity.

The experiment was performed by using an unpolarized electron beam stored in AmPS
(see Fig. 3.3) [87, 88]. This ring is an electron pulse stretcher with a circumference of
212 m. It is fed by a medium-energy electron accelerator (MEA) which can accelerate
electrons up to energies of 770 MeV. Long beam lifetimes (~ 20 min) are obtained by
compensating synchrotron radiation losses with RF power from a 476 MHz cavity in

AmPS. In this way, a nearly 100% duty-factor electron beam with maximum energy of
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900 MeV and current up to 200 mA (obtained by stacking and ramping) can be stored
in the ring. Design parameters of AmPS are listed in Table 3.1.

Table 3.1:  Overview of design/operational parameters of MEA and AmPS.

Parameter Value

Emax Linac 770  MeV

ring magnets 900 MeV
Beam loading 2.6 MeV/mA
Circumference 212 m
Revolution time 0.71  ps
Magnet radius 33 m
SR loss at 700 MeV 6.2 keV
RF frequency

stretcher mode 2856 MHz

storage mode 476 MHz
SR damping at 700 MeV

emittance 1077 m-rad

damping time 0.153 s
Oy at 1P 22 m
By at IP 6.8 m
Itinac 10 mA
Linac pulse length 2.1 s
Injection rate 200 Hz
Beam duty factor ~100 %
TExtracteq @t 600 MeV 25 wA
Istored 200 mA
Lifetime 1200 s

The storage cell was located in the Internal Target Facility (ITF) where the ring lattice
had minimum beta-function values of 3, = 2.2 m and 3, = 6.6 m. At the interaction
region, the beam orbit can be shifted by using so-called local bumps which consist of
two sets of steering magnets. In this manner the stored beam can be steered precisely
through the center of a fixed storage cell.

A set of slits was installed at the opposite side of the ITF to reduce the beam halo.
This resulted in an improvement of the background rates from beam scattering from the
cell walls (See Section 3.3).

Currently, a polarized electron source is installed and polarized electron beam com-
missioning is in progress. In order to maintain the electron polarization in the storage

ring, a ‘Siberian snake’ is installed in the ring. The polarimetry of the polarized electron
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beam is realized by Compton laser back-scattering. Future experiments with polarized
internal 'H,?H and 2He targets and polarized electron beam are anticipated. Further-
more, in stretcher mode, continuous-wave (CW) electron beam can be extracted and used

for experiments with external targets.

3.1.3 Principle of a storage cell target

The principal function of a storage cell is to increase the luminosity of an experiment
without affecting the quality of the circulating beam. This is illustrated in Fig. 3.4.
An intense polarized beam is injected into the feed tube of a T-shaped cell. The gas is
confined by the cell to the region close to the stored beam axis, resulting in an increase
of the areal target density by several orders of magnitude compared to the density of a

free atomic beam.
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Figure 3.4: Principle of a storage cell: gas is injected in the center of the T-shaped
cell. The electron beam passes through the center of the windowless conductance limiter.
The density distribution will be approximately triangular.

Due to the gas dynamics, the target density p(z) will have an approximately triangular
distribution. The central density, pg, can then be written as [89]

112 [M 1
e = oo
3Co &\ Tean 3C

Po = fDO (32)
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where fpo (atoms/s) is the intensity of the injected deuterium beam with velocity vpo,
[ (cm) the length of the target cell, d (cm) the diameter, M = 2 (a.u.) the deuterium
mass, Teen () the cell temperature, Cp = 3.81 x 10 cm?®/s the conductance constant
and the factor of 3 is due to the T-shape of the cell. Note that the density is independent

of the velocity vpo of the injected beam. Consequently, the parameters that govern the

1 (/22 [M
ﬁ‘k 0 5 .
E fD 300 d3 Tcell (3 3)

where [, is the electron beam current. From this expression it is clear that one will

luminosity can be written as

try to minimize the diameter, increase the length, lower the temperature of the cell
and maximize the circulating electron beam current in the storage ring. The minimum
diameter of the storage cell is determined by the charge distribution of the stored electron
beam, as will be discussed in Section 3.3, while the length of the cell is constrained by
the detector acceptance as well as the variation of the beta-functions in the region near
the interaction point. A detailed description of the construction of the storage cells used
in our experiment is given in Sec. 4.2.1.

Compared to a free jet, the storage cell represents an improvement of more than two
orders of magnitude in the luminosity. The luminosity of an experiment with a free jet

can be characterized by

Lo e (3.4)

QTDOUDO7

where rpo is the radius of the free jet. For a storage-cell target the factor of improvement,

v, over a free jet can be written as

1 (/22 M
~ 2rm0 0. .
K 300 d3 Tcell oD (3 5)

For our experiment, ! =40 cm, d = 1.5 ecm, T.ep = 100 K, M = 2 a.u., rpo ~ 0.6 cm and

vpo ~ 10° ecm/s. Consequently, in our experiment we obtained ~y ~ 350.
For a cylindrical storage cell, the mean number of collisions of an atom with the walls
is independent of atomic weight and cell temperature, and can be estimated from [90]

(N = 200 (3.

For a cell with a diameter of 1.5 cm and a length of 40 c¢m, the number of collisions
amounts to about 270.

The dwell time of the polarized gas atoms in the storage cell is given by

pdwell _ 7 _pstick 4 tﬂight7 (3.7)



35

stick

where T is the mean sticking time per collision and #118" the mean flight time of the

atom (flying from the center to the exit of the cell). The latter can be expressed by

JHlight Ve 2 Teen
- 3C 16Co d V M’

(3.8)

thight ~ 4 g The

mean sticking time depends on the characteristic binding energy Fj, of an atom on the

where V.o is the volume of the T-shape cell. In our case, we have

surface with temperature T and is given by the Arrhenius’ law [89, 91]:

TstiCk =7 eXpEb/kBTcell7 (39)
where kg is the Boltzmann constant and 75 ~ 107!2 s. For a cell coated with Teflon
(Eh ~ 30 meV) at a temperature of 100 K, we have N.7yia =~ 1072 s. This is negligible
compared to t&ht However, polarized atoms may depolarize during this period of time
due to their interactions with local magnetic fields present at the surface of the cell
material [92].

Since the dwell time is about 4 ms, only few events are lost when reversing the target
polarization every 10 s. The polarization direction of the gas atoms was defined by an

external magnetic field present over the entire cell length.

3.2 Monte Carlo Codes

Here, we present the Monte Carlo codes which were used to optimize the detector system,
to study the detector resolutions and to interpret the experimental results.

The Monte Carlo codes contain five main parts: an event generator, calculation of
cross section and counting rates, calculation and/or extrapolation of the asymmetries,
resolution folding, and an interface with the PAW—CERN library [93]. There are slight
differences among the codes used for elastic scattering, quasi-elastic scattering and Mgller
scattering from a deuterium target. Here, we only show some details of the codes used
for the 2ﬁ(e, e'p) channel.

First we introduce the coordinate systems used in the codes. Fig. 3.5 schematically
shows the setup with a storage cell, a proton detector (‘p-det’) and an electron detector
(which is not shown in the figure for simplicity). A global (xg, yo, z0) coordinate system
is defined with the zp-axis along the electron beam direction and the z¢-axis towards the

electron detector and located in the plane defined by the cell and the center point of

/

!} can be

the electron detector. A ‘mother’ electron detector coordinate system (a,y!, z
obtained by a translation of the (2, yo,20) system along the zo-axis over a distance d.

followed by a rotation along the yo-axis with an angle #°. Similarly, a ‘mother’ proton

/
P

system along the zp-axis over a distance d,, followed by a rotation along the yp-axis with

detector coordinate system (z],y;,z,) can be defined by a translation of the (o, yo, 20)
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Figure 3.5: Schematic representation of the coordinate systems used in the Monte

Carlo codes. The electron detector is not shown for simplicity. See text for details.

an angle 02, and a subsequent rotation along the zg-axis with an angle of 180° (assuming
coplanarity with the electron detector for simplicity).

The mother electron (proton) detector is defined virtually and has a height of h.,),
width of we(,) and thickness of #.(,). The angular acceptance should be larger than any
individual part (for example WC’s and trigger scintillators) of the electron calorimeter
(range telescope) as shown in Fig. 4.17. Those individual detector parts are treated
in the codes using additional translations and Euler-rotations of the mother coordinate
systems. These parts can be used as phase-space cuts on the event-rate simulation. In
case of WC’s, one can also use them to project event rates on each wire.

Events are simulated with electrons and protons in coincidence, and neutrons as
recoil particles. An electron (proton) originates from a vertex located at a distance ¢z
from the cell center and hits the front face of the mother electron (proton) detector at
(:zj’e(p), Yei(p) 0). Each event is kinematically treated in its own coordinate system (z,y, 2),
which is defined with the z-axis along the e-beam direction and the z-axis located in
the scattering plane and pointing towards the electron side. Such a coordinate system is
obtained by a translation of the (g, yo, z0) system along the zp-axis over a distance ¢z,
followed by a rotation along the zp-axis with an angle ¢.. All the kinematic quantities
are computed in this system which is labeled the ‘laboratory’ frame. When needed, the

variables are boosted with the corresponding Lorentz parameters into the center of mass
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system.

In order to predict the count rates and asymmetries, one has to evaluate the five-fold
differential cross section (denoted as ¢°) shown in Eq. 2.60. The difficulty here is how
to perform a five-fold integral over the extended target and detector phase space. It
turns out that this can be treated uniquely in the Monte Carlo codes using the following
procedures.

Firstly, a vertex z-position, tz, is randomly generated using a triangular density dis-
tribution over the storage cell region. If the electron beam has a size of o, and oy,
then the vertex x- and y-positions are generated accordingly from the corresponding
Gaussian distributions. Secondly, the hit positions of the mother electron (proton) de-
tector are generated uniformly within the geometric acceptance (—we(,)/2, +we(,)/2) and
(=hey/2, +he@)/2). Then an electron (proton) track can be defined by the vertex po-
sition and the hit-point. Consequently, one can calculate 0.,y and ¢.,). Thirdly, the
scattered electron energy is uniformly generated within an energy acceptance AF.. The
energy acceptance is estimated from data for the *H(e, e'p) reaction obtained with our
detector system.

In three-body kinematics, the highest allowed momentum of one of the outgoing

particles is limited by

1

5T \/(Efm — (m2 + my —mq)?)(E2, — (m2 +ms +m1)?),

(pim)max =
(3.10)

where E.p, is the total energy in the three-body center of mass system and m; are the
masses of the three particles. For electrons of the *H(e, €’p) reaction, Eq. 3.10 obviously

reduces to

(P Jmax & o, (3.11)

where Fj is the electron beam energy.
Given five kinematic quantities for three outgoing particles (electron, proton and
neutron), the remaining four can be calculated rigorously by using conservation of four-

momentum. Namely, one has

Yipisinf;cosd; = 0
Yipisind;sing;, = 0

3.12
Yiypitmi = Eo+ My (3.12)
Yipicost; = /E§—m2,
where 1 = e,p,n. With p., 0., ¢, 0, and ¢, known, one can then calculate p,, and

consequently p,, 8, and ¢,. In principle, Eq. 3.12 is a quadratic relation and there
will be possibilities of having two solutions, which correspond to proton and neutron
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knock-out as treated in the PWBA. Both solutions are accounted for in our simulation
codes.
The event rates are calculated as follows. One starts from the relations

/-I-wp/2 /-I-hp/2 1 /(%)max do
wp/2 J—hp/2 daldy] N d2 S0 min  dO),d,
_ 1 /9?“ do d® —d ?cos Otz tan ¢,
d2 Jopin  sin0,d0,do, (d)?+ 122 = 2d!tz cos 0)3/% tan ¢,
1 emax do_
- - 3.13
d2 /e;mn sin 0,d0,do, I ( )
where 0 and ¢, are defined in Fig. 3.5, and d, = |/d2 + 2/ 2. If tz,w, and h, are
d
all small (<« d,), then the Jacobian .J, ~ sin§, as expected. Note that /7sin(9 dag 0o,

can now be directly related to the cross section ¢®. The

(and mmll&rly/m)

right-hand side corresponds to the Monte Carlo integral. Therefore, the event rates n

are given by

n:wphwhAEeiV:(
daldyldx) dy dE.

=1

do wohwoh AE. &
), = e o )
pe =1 (3.14)

where N is the total number of generated Monte Carlo events. Finally, the event rates
can be binned as a function of any kinematic quantity, for example p,,, 87", et

For the momentum density distribution of the nucleon inside the deuteron we use
a parameterization of the data of Bernheim et al. (see Fig. 2.5 and 2.6). For missing
momenta between 0 and 170 MeV /¢, a cubic spline fit of the data was used. For missing
momenta between 170 MeV/c and 340 MeV/c, a logarithmic straight-line fit was used,
while for higher missing momenta a linear extrapolation of the fit was employed.

Using the Monte Carlo codes we studied the experiment for various detector and
target configurations. From this we concluded that there was an advantage in using the
range telescope as our proton detector system over the two hadron detectors existing at
NIKHEF. Furthermore, the studies showed that there was no advantage in moving the
proton detector around and we decided to place the range telescope at a fixed position.
In addition, we concluded that the energy resolution of the electron calorimeter was not
critical for reconstructing the missing momenta (see also chapter 6). In a later phase
of the experiment, the Monte Carlo codes played an important role in interpreting the

experimental analyzing powers.
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3.3 Spatial Distribution of Stored Electron Beam

3.3.1 The slits system for measurements

Few data exist on the spatial distribution of stored electron beams. The intensity of the
core of a damped electron beam is expected to follow a Gaussian distribution with o-
values in the order of 1 mm or less. Disturbing processes, such as rest-gas scattering and
wake-field effects, will cause the intensity to drop off slower in the tails of the distribution.
The contribution of such a halo determines the minimum diameter of a storage cell. Since
the effective target thickness of the gas stored in a storage cell is inversely proportional

to the cube of the cell diameter, it is essential to study the beam halo prior to installing

such a cell.
!
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Figure 3.6:  Schematical drawing of the slits system. Top: view along the beam
direction. Bottom: side view. mS: micro switch, HC: heliconflex seal, SW: stitch weld,
Al: aluminum, S.5t: stainless steel, LVD'T: linear velocity and displacement transducer.

Several test measurements have been performed with an electron beam stored in
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AmPS. The goal of these tests was to obtain information on the spatial distribution of
the stored beam, so that the diameter of the storage cell could be fixed. Therefore, a
slits system was built, schematically shown in Fig. 3.6, and installed at the interaction
point. It consists of 4 tungsten plates of 9.5 mm thickness. All four slits can be moved
independently in or out using step motors. The slits are labeled ‘up’, ‘down’, ‘in’ and
‘out’ (with respect to the ring). The absolute positions of the slits are monitored by
LVDTs. Micro-switches are installed to warrant the safety of the system. In a later stage
of our experiment, the slits system was installed at another location of the ring as shown

in Fig. 3.3.

3.3.2 Lifetime studies

To study the beam lifetime, we used the stored electron beam with an energy of 410
MeV, a lifetime of approximately 100 s and a peak current of about 10 mA. The electron
beam current was measured using a Parametric Current Transformer (PCT)! [94].

Fig. 3.7 shows the beam lifetime as a function of the position of the slits. It can
be seen clearly that in the domain where the slits were far away from the beam center,
there was a negligible effect on the beam lifetime. When a slit intercepts a considerable
fraction of the beam, the lifetime of the beam drops. When the slit is moved in further,
the beam can no longer be stored.

The beam lifetime will decrease when an aperture size at the IT location is reduced
[95]. The quantum lifetime of the beam, 7,, can be related to the aperture size (+) by

el

h 3.15
2qu7 ( )

Ty =

with ¢ = (2/0,)?/2 and 74 the damping time (for £ = 700 MeV one has 7, = 0.15 s as
listed in Table 3.1, while for £ = 410 MeV one has 74 &~ 0.40 s). In general, the observed
beam lifetime, Teyp, can be written as

1 1 1
= —+—. (3.16)

Texp Ty 7o

Here, 75 is the so-called ‘natural’ beam lifetime e.g. due to scattering of the low-energy
electrons from the residual gas. The dependence of the lifetime on x can be derived from
Eq. 3.15 by solving the resulting expression for o,. Assuming a Gaussian distribution,

one obtains after some arithmetic:

2 X

g

(3.17)

T To 0N Texp N g

To — Texp O T
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The 0,(,) deduced from the measured 7y, values and the results for the ‘in’ (‘down’)

slits are listed in Table 3.2 (3.3). The calculations have been limited to the region close to

the beam center where the beam lifetime strongly depends on the position of the slits. We
assumed 79 = 95 s. The calculations yield o, = 0.61 £0.12 mm and o, = 1.134+0.20 mm.

Fabricated by Julien Bergoz, Crozet, 01170 Gex, France.
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Table 3.2: o, derived from the measured Tey,-values for the ‘in’ slit.

X (Mmm)  Texp (8) % (mm)  Texp (s) 7'70_ o, (mm)
AN, To — Texp

1.30 45

> 1.82 1.35 49.5 2.088 0.51
1.40 54

> 0.54 1.45 55.5 2.405 0.74
1.50 57

> 0.92 1.55 59.8 2.695 0.64
1.60 62.5

> 1.21 1.68 68.8 3.619 0.55
1.75 75

Table 3.3: o, derived from the measured T.y,-values for the ‘down’ slit.

NN Tey T
y (mm)  Texp (s) Tp g (mm) Texp (s) To—ioﬂxp oy (mm)

1.75 34

> 0.752 1.875 37.5 1.652 0.90
2.00 41

> 0.460 2.125 43.5 1.845 1.09
2.25 46

> 0.712 2.375 50.5 2.135 1.00
2.50 55

> 0.348 2.625 57.5 2.933 1.26
2.75 60

> 0.360 2.925 64.0 3.065 1.28
3.05 68

> 0.343 3.300 73.0 4.318 1.26
3.50 78

Similar results can be obtained from the measurements with the ‘out’ and ‘up’ slits as
shown in Fig. 3.7. The error of about 20% in the results is partly due to the accuracy of
the lifetime measurements. The obtained o,(,)-values in Table 3.2 (3.3) do not deviate

much from each other over the measured x(y)-range, and one can conclude that the
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charge distribution of the beam in the region close to the beam center (z,y < +30,,) is
a Gaussian function. This region contains more than 99% of the stored electrons.
The equilibrium electron beam size can be used to determine the beam emittance,

since

Ta(y) = \/ Be(y)€o() (3.18)

where 3., is the beta function and ¢, the emittance of the electron beam in the
horizontal (vertical) direction. The values of the beta functions from Table 3.1 yield
€, = 1.69 £+ 0.66 x 10°7 m-rad and €, = 1.87 £ 0.66 x 1077 m-rad.

The emittance of the electron beam at injection is given by
51
eMEa = 2 X 10 7 m rad. (3.19)

For a 410 MeV beam, one calculates 0.48 x 10~ m-rad, which is about a factor of 3.5
smaller than the ‘measured’ values.

The emittance of a damped beam is determined by the specific magnetic lattice [88].

One has

I
Cox = Cq’ﬁﬁa (3.20)

: 55 h
where the Lorentz quantity v denotes the beam energy, C;, = ——=

324/3 m.c?
and [; are synchrotron integrals, which are lattice-dependent parameters. For AmPS,
Is
IL,— 1

will have ¢, < €., whereas for complete coupling (‘round beam spot’) the emittance

=3.86x10"" m

= 0.13. In an uncoupled situation (corresponding to a ‘flat beam spot’) we

will be shared so that ¢ = ¢} = ¢,/2. Numerically, for a 700 MeV beam, ¢, amounts
to 1.0x10~7 m-rad, while for a 410 MeV beam, one has 0.32x10~7 m-rad. This is
significantly smaller than the ‘measured’ values.

Consequently, the large emittance cannot be due to strong coupling only. A possible
explanation may be given by the presence of the residual gas in the ring. Especially,
during the beam lifetime measurements, the ring vacuum was not optimal. The ring
became operational shortly after a shut-down period and most of the ion-collectors were
not operational. A vapor pressure of 5 x 107® mbar partial H,O in the ring represents

an effective target thickness of about 3 x 10'* HyO molecules-cm™2.

According to Lac
[96], the emittance growth can amount to 7x107* m-rad per revolution for 10'* H,0
molecules-cm™2. Therefore, the emittance will already reach the ‘measured’ values within
about 5 seconds.

A poor ring vacuum might also explain the observed beam lifetime of approximately
100 s. In the preceding running period, most of ion-collectors became operational

and more vacuum pump stations were installed along the entire ring, especially in the
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curved sections. The vacuum pressure improved drastically. With the installation of the
476 MHz cavity, the synchrotron radiation loss was compensated so that a beam lifetime
of more than 1000 s was reached. More emittance measurements have been made by the
AmPS accelerator group. Note that the ring was initially designed to run experiments
in extraction mode. However, with the present emphasis on internal target physics, a
plan was developed to change the excitation of magnets in order to improve the damped

emittance.

3.3.3 Study of cell-wall background

Next, the beam halo distribution was studied. Two scintillator telescopes, each consisting
of two 2 mm thick plastic scintillators, located in the horizontal (vertical) plane at an
angle of 20° (38°) and covering a solid angle of 45 (20) msr, were placed at the IP.

The coincident count rate was measured in each telescope as a function of slit position.
In Fig. 3.8 the count rates are shown for the four slits. All measurements show a similar
behavior when a slit is moved in: a constant background rate until a position is reached
at which the count rate starts to increase drastically. Finally, the photomultipliers had
to be switched off due to the high rate.

The count rates in the horizontal telescope were about a factor of 10 higher than the
rates in the vertical one. This holds for both the ‘up/down’ and ‘in/out’ slits, and can
be explained by scattering angle and phase-space differences of the telescopes.

The count-rate data show that the beam distribution has long tails (the so-called
‘beam halo’), extending over 20 (10) times the o, (o,) values obtained from Table 3.2
(3.3). This indicates that the tails cannot be described by Gaussian distributions, es-
pecially for the x- (horizontal) plane. The fact that the horizontal plane (20 x o) is
worse than the vertical plane (10 x o) probably confirms that synchrotron radiation
losses form a major contribution to the beam halo. Note that o, is about a factor of two
larger than o, (since 3, > ;). The count rates for both x- and y-planes start to increase
almost at the same distance away from the beam center. Therefore, we concluded that
an elliptically shaped storage cell was not necessary and a cylindrical cell was used.

From the count-rate measurements and Monte Carlo simulations using the CERN
GEANT-package [97], we estimated that with a storage cell of 15 mm diameter and
25 pm wall thickness the (e, e’p) background rate from the cell walls would be about 10-
30% of the rate from the polarized deuterium target. Conservatively, we started the first
measurements with a storage cell of 25 mm diameter and 100 pgm thickness. Shortly after,
we used storage cells of 20 mm diameter and 25 ym thickness. Finally, with emphasis on
the physics of elastic e—gscattering, we used storage cells of 15 mm diameter.

In order to further reduce the background rates (from beam scattering from the cell
walls), it proved important to use the slits to scrape the beam halo. This will be discussed

next.
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Figure 3.8: Count rates (kHz/mA) in the horizontal and vertical scintillator telescopes
as function of the distance of the horizontal and vertical slits to the center of the beam.

3.3.4 Effects of beam scraping

The slits system was moved from the IT location to the opposite side in AmPS as shown
in Fig. 3.3. A storage cell target and the detector system (as shown in Fig. 4.17) were
installed at the IP. The measurement employed a storage cell of cylindrical shape with a
wall thickness of 100 pm, a diameter of 20 mm and a length of 400 mm.

The investigation was performed by studying the (e,e’p) rates while changing the
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Figure 3.9: Event distribution as a function of the vertex z-position for (e, €'p) scat-
tering from a storage cell with a diameter of 20 mm. a) empty cell measurements with
(hatched histogram) and without (blank histogram) the slits; b) comparison of a Dy gas
target and the empty cell with the slits in place for scraping the beam halo.

settings of the slits. The first measurement was for an empty storage cell, with the slits
completely out. The full beam halo was allowed to hit the storage cell. The second
measurement was also for an empty cell, but with the slits moved in to scrape away part

of the beam halo. All four slits were moved in to about 6 mm from the beam center



67

(hereafter referred to as the ‘closed” position). These positions were chosen such that
the singles rates in both the CAL- and RT- arms were minimal, while not hampering
the injection of the electron beam. The third measurement was for a D, gas target with
the slits in ‘closed’ position. Dy was provided through a capillary from a buffer volume
directly into the center of the storage cell (see chapter 4). The gas flux was about eight
times higher than that of the ABS.

In order to understand the following, we give a brief outline of the data analysis
(for a full discussion see chapter 6). Only coincident events with tracks in both proton
and electron arms are selected. We require that there is substantial energy deposited
in the electron calorimeter. Protons are selected using correlations of the ADC values
from the RT scintillator array. Then cuts are applied on the coincident timing (TOF of
protons/deuterons/electrons) and the transverse vertex distance.

Fig. 3.9 shows the (e, €'p) event distribution as a function of the vertex z-position. The
distributions are normalized using the integrated beam currents from the PCT. In Fig.
3.9.a) we compare the two measurements with the empty cell. The hatched histogram
corresponds to the data obtained with ‘closed’ slits, while the open histogram is for the
measurement with ‘open’ slits. Due to the presence of the feed-tube, we observe more
events around z = 0 mm. Clearly, closing the slits results in a factor of 4.5 reduction
in the total number of events. In Fig. 3.9.b) the measurement of the empty cell with
‘closed’ slits (hatched histogram) is compared with the measurement for a Dy target
(open histogram). The (e, e’p) event distribution for Dy shows the expected triangular
shape (see also Fig. 3.4), while the empty cell distribution is as one expects for cell-wall
events. Comparing the total number of events for the two measurements, we conclude
that the background contribution in the Dy measurement is 3-4%. Therefore, we expect
that the background contribution for an ABS measurement will be about 25-30% using
a storage cell with a wall thickness of 100 gm. The background will reduce to less than
10% when a 25 pm cell is used.

3.3.5 Mogller electrons

The cross section for Mgller scattering, namely electron-electron scattering, can be pre-
cisely calculated from QED. In an electron scattering experiment where non-magnetic
spectrometers are used Mgller scattering is the prime source of background. Therefore,
it is important to demonstrate that it is possible to operate our detector setup in such
an environment.

The kinematics for Mgller scattering is determined once the scattering angle is known.

The energy of the scattering electrons in the laboratory system can be written as
Erap = v2me + 4237 me cos Qe (3.21)

Here (3 and v are the Lorentz quantities for the center-of-mass system moving with respect
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Figure 3.10: The cross section (a) and momentum (b) of scattered Mgpller electrons as
a function of laboratory angle for 700 MeV electrons incident on deuterium atoms.

to the laboratory system. The relation between 8y, and 8., is given by

sin B

_ .22
Y(1 + cos Ocm) (3.22)

tan (glab =



69

The cross section in the laboratory system can be obtained from

do B dQen do B dQe o 1 N 1 41 (3.23)
A% A A A, 4E2 4 0c Ocm ' '

cos?
2

The factor —— defines the transformation of solid angles between the laboratory and

dQlab

center-of-mass systems, and « is the fine-structure constant. Since E;, can be calculated

from the incident electron energy by using a Lorentz transformation and 6., is given by
Eq. 3.22, both Fj,, and U

function of the scattering angle ),.

can be evaluated directly in the laboratory system as a

In Fig. 3.20, the cross section and momentum distribution of Mgller electrons are
plotted as a function of scattering angle for 700 MeV incident energy. At a laboratory
angle of about 5° one can distinguish between backward and forward scattering. Since
the angular region covered in our experiment is from 20° to 70° (see Fig. 4.17), back-
ward Mpgller scattering dominates. The backward scattered Mgller electrons have fairly
low momenta. Therefore, we placed a thin metal foil in front of the vertex MWPC
which blocked most of the Mgller electrons without affecting the high-energy electrons
corresponding to the (e,e’p) and (e, €'d) channels. For the proton/deuteron side, since
the protons and deuterons give relatively large signals on the wires, the effect of low-
energy Moller electrons will be small for appropriately chosen threshold settings of the
wire-chamber discriminators.

Electron rates were simulated using a Monte Carlo code in which the vertex generator
included Mgller scattering. The calculation predicts that a cut-off momentum of 1 MeV/c
yields a counting rate of ~10 kHz/wire in the most forward area of the vertex MWPC

of the electron arm. Such rates can be handled by our detector system.

3.4 Target Design Considerations

We have shown in Sec. 3.1.3 the principle of a storage cell target and in Sec. 3.3 we
showed studies of the electron beam spatial distribution. One of major tasks in our
experiment was to build a tensor polarized deuterium target. We made a choice of using
an existing atomic beam source (ABS) containing two sextupole magnets to feed our
storage cell target with an intensive flux of polarized deuterium atoms. We considered
optimizations of the sextupole focusing optics to increase the atomic flux (intensity),
constructed a polarization scheme with the highest figure of merit (AP*I, I = atomic
beam intensity, AP = polarization difference between the two polarization states of the

experiment), and measured the absolute target polarization with several techniques. In
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the following, we will discuss some considerations, which are essential in the design of a
polarized deuterium internal target.
The structure of deuterium atomic hyperfine states is well known. The interaction

hamiltonian of the coupled nuclear and electron spins (f and j) arising in a static mag-

netic field B is
2h Vg »

Hytr = [T+ ps(gri+gsJ)-B. (3.24)

Here, g; = —0.00047 and g; = 2.0023 are the gyromagnetic factors, up is the Bohr
magneton and

hVO = /“LB(gJ - gI)Bcv (325)

where the critical field B. characterizes the strength with which the two spins interact
(B.=11.7 mT).
The energy eigenstates for deuterium can be expressed as linear combinations of the

eigenvectors of the spin operators [ and J:

)
)
> 1 2 (3.26)
)
)
)

where

I I
ape = [5(1+ag) ag = 451 —az),
2 2

1., 2 B

The energy of these states for a deuterium atom in a magnetic field are shown in Fig.
1 — — —
3.11. At zero magnetic field, the two possible total spin states F' =1+ 3 (F=1+4J)are

(2F + 1)-fold degenerate. The energy splitting between the two levels is 1y = 327.4 MHz.
In a non-zero magnetic field this degeneracy is lifted. In the weak field limit (B < B.),
the interaction with the external field can be treated as a perturbation with respect
to the coupling between the two spins. Fach of the two multiplets splits into 2F + 1
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Figure 3.11: Hyperfine structure of deuterium as function of the reduced static field
x = B/B. (vo = 327.4 MHz). The spin quantum numbers F', mp (my, my) are indicated
for the weak (strong) field limit on the left (right) side of the figure.

energy substates separated by equal energies of 9.3 MHz/mT and characterized by the
projection quantum number my of the total spin along the magnetic field. At large B
(B > B.), the electronic and nuclear spins decouple as the interaction with the external
field becomes dominant. It is only in this limit that the spin projections m; and mj will
be ‘good’ quantum numbers.

At the target location a magnetic field is provided to define the nuclear spin direction.
The nuclear polarization of an ensemble of atoms is then entirely determined by the
strength of such a holding field and by the relative populations ny (k = 1,...6) of the
hyperfine states. Fig. 3.12 shows P, and P,. for the various hyperfine states as function
of the magnetic field strength. The ensemble average (denoted here by double brackets)

of the vector polarization is given by

P, ={L))=n1+ oz2__|_n2 — ozi_ng —ng —a® ns+ oz3_+n6 =ny —n_

(3.28)

and of the tensor polarization by

P, = <<3[Z2 —2))=1- 3(ozi+n2 +a? ns+ ozi_n5 + oz2__|_n6) =1 —3ng,
(3.29)
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Figure 3.12:  Vector and tensor polarization of the deuterium hyperfine states as
function of the reduced static field. The dots show the polarization values for 27 mT,
the working point of our tensor polarized *H (e, €'p) internal target experiment.
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where ng o are the probabilities of finding the nuclear spin in the various nuclear spin
substates m; = +1,0. We chose B = 27 mT (~ 2.3B.) for our ‘strong’ target holding
field. Obviously, with all six hyperfine states equally populated, one obtains zero tensor
and vector polarization. Therefore, one needs to manipulate the hyperfine states of the
target atomic ensemble before feeding atoms into the storage cell. This can be achieved

by using sextupole magnets and RF transition units.

3.4.1 Focusing and rejection of atoms by using sextupole mag-
nets

To get more insight into the properties of the Stern-Gerlach magnets, a raytracing code
was written which computes the trajectories of the atoms (H or D) throughout the various
elements of the ABS and the target cell.

The relative beam flux at the exit of the nozzle for atoms with velocities between v
and v + dv is assumed to be of the form [98§]

, (—w)?

v 2
flv)y=2 e & (3.30)
where ¢ = /2kgTa/m, T is the temperature of the nozzle (& 70 K), and vy and « are
parameters for super-sonic jet flow. The program uses the velocity distribution measured
at ETH [99] and MPI [100] to generate the starting conditions of the atoms at the nozzle.
For a sextupole magnet the radial dependence of the magnetic field is assumed to be

of the form

2
B(r) = BO(Z)(i) , (3.31)

To
where r is the distance to the beam axis denoted by z, By(z) the pole-tip field and rg
the pole-tip radius. The algorithm is based on a fourth-order Runge-Kutta iteration of

the equation of motion

d*r

’
mﬁ = Q,Ueff BO % (332)
Here
2
21mF1 Ty
flet = + + L g (3.33)
14+ dmp x4+ 2’ 2
21 +1

is the effective magnetic moment of the atom [101]. For hyperfine states 1, 2, and 3 (4,
5 and 6), one has that peg > 0 (< 0), and consequently atoms in those states will be
focused (defocused) when they pass through a sextupole magnet.
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Figure 3.13: Trajectories of deuterium atoms (in hyperfine state | only) throughout
the ABS elements calculated with the raytracing codes described in the text. Note that
the transverse dimensions (x-axis) are magnified. S1, 52: sextupole magnets; MFT, SF'T:
RF-transition units. MFT 1-4 transition is switched off (top) and on (bottom).
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The output of such a calculation for our setup is illustrated in Fig. 3.13. At the top it
shows trajectories of atoms populated in hyperfine state 1 with the MFT 1-4 transition
is switched off. One sees that the atoms are focused by the two sextupole magnets
into the feed-tube of the storage cell. At the bottom the same trajectory calculation is
repeated with the MFT 1-4 transition switched on. After the transition, most of atoms
are defocused by the second sextupole magnet and remain outside the acceptance of the
feed-tube.

This program permits to optimize the design of focusing magnets for a given nozzle

temperature and feed-tube geometry.

3.4.2 Polarization scheme

Among the different RF transition schemes which can deliver polarized deuterium beams
with tensor or vector polarization switchable between maximal values, the schemes shown
in Table 3.4 offer the highest figure of merit with the least number of RF transition units.
In particular, for tensor polarized deuterium only one MFT and one SFT are needed,
in which case the MFT is used for a 1-4 transition (positive gradient) inbetween the
sextupoles in order to eliminate hyperfine state 1, while the SFT is then used to flip P.,
from —2 to +1 with the o-transitions 3-5 and 2-6. The magnetic holding field at the
target has to be strong compared to the critical field of deuterium.

While the figure of merit dramatically decreases for tensor polarized targets when the
target holding field is decreased, for vector polarized deuterium only a factor close to
1.5 is lost by choosing a weak target holding field. Therefore, both a strong or a weak
holding field can be used at the target when working with vector polarized deuterium.
The polarization can be produced as follows: firstly, state 3 is eliminated with a 3-4
MFET? before the second sextupole. Next, for a weak target holding field, the 2-6 SFT
is continuously on, while the WFT (positive gradient) is switched on and off to reverse
P, from +5/6 to —5/6. For a strong holding field we alternatively use the 2-6 SF'T and
the WFT, obtaining P, = 41 or —1. This last scheme requires operating a WFT in an
environment with strong magnetic fringe fields. Note that the ABS equipped with the
MFT and the WFT also allows to produce a maximally vector polarized hydrogen beam.

*This transition can be achieved either with a positive gradient and an RF cutoff
upstream of the RF coil to inhibit the transitions 1-2 and 2-3, or, more simply, with
a negative gradient (the first two encountered transitions 1-2 and 2-3 do not affect the
populations of states 1, 2 and 3).
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Table 3.4: RF transition schemes for producing tensor and vector polarized deuterium
beams. For each scheme, the columns ‘+’ and ‘—’ designate the two polarization states
for an asymmetry experiment. By is the magnetic holding field at the target.

Tensor Vector Vector
(B: > 11.7mT) | (B> 11.7mT) (By < 11.7 mT)
+ — + — + —
States after 1°* sext. 1,2,3 1,2,3 1,2,3
MFT 1 <4 34 34
States after MFT 2,3.,4 1,2,4 1,2,4
States after 27¢ sext. 2,3 1,2 1,2
SFT 246 3¢5 |26 oft 266
States after SFT 3.6 2.5 1,6 1,2 1,6
WEFT off off 1,2+ 3,4| off 1,6+ 5,4
States after WF'T 3.6 2.5 1,6 3,4 1,6 4.5
Tensor Polariz. P.. +1 -2 +1 +1 +1/2 +1/2
Vector Polariz. P, 0 0 +1 —1 +5/6 —5/6
Figure of merit 18 8 5.6

3.4.3 Principle of RF transitions

The mechanism of RF induced transitions between hyperfine states is well known and
has been discussed in several publications (see for example Ref. [102, 103, 104, 105]).
Here, the discussion is restricted to some aspects relevant for the design of deuterium RF
transition units for our experiment.

With the introduction of an oscillating magnetic field, transitions between two selected
energy substates can be induced, provided that the frequency of the RF field matches
with the energy splitting of the two substates in the static field. In the case of an
atomic beam, a gradient is superimposed on the static field in order to ensure that the
resonance condition is met exactly once for each atom passing through the RF field. The

hamiltonian takes the form
H = Hstat + HRF7 (334)
where the additional term

Hpp(t) = ps(gr L+ g1 J) - Bre(z(t)) cos(2mvt) (3.35)
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describes the interaction of the spins with the oscillating field (v = radio frequency,
Brr(z(t)) = RF field amplitude along the trajectory z(¢)). The ‘strength’ of the transi-
tion between the substates can be characterized by the corresponding transition matrix
element (k | Hgp | {) whose values are shown as a function of magnetic field strength in
Fig. 3.14.

An RF transition is called either a sigma (o) or pi (7) transition depending whether
the oscillating field has to be parallel or perpendicular to the static field in order to
obtain a nonzero interaction matrix element. o-transitions correspond to Amp = 0,
m-transitions to Amp = +1. For deuterium the only o-transitions are the 3-5 and 2-6
transitions.

Conventionally, RF units are classified according to the regime in which they operate
and to the states that are involved in the transition. A transition unit that operates in
the weak field limit, and which only induces transitions within a multiplet (AF = 0), is
called a weak field transition (WFT). Typical frequencies of the RF field are 5-15 MHz
(corresponding to B ~ 0.5 — 1.8 mT). In a simplified picture, a WFT reverses the
populations of states with opposite mp within the same multiplet. For example in a
so-called 1-4 WFT, the transitions 1-2, 2-3 and 3-4 happen at the same static field for
a given radio frequency. However, a full description shows that the different transitions
involved in the process will be encountered in a sequence which depends on the amplitude
and sign of the static field gradient (see ref. [102]). As Fig. 3.15a shows, this effect can
be enhanced by going to an intermediate field (generally 2-3 mT) with appropriate field
slope, so to spatially separate the different resonances typically by a few cm. By then
restricting the RF field around some of the resonances, one can induce selected transitions
(e.g. 2-4, or 3-4). This type of transition is called a medium field transition (MFT).
Finally, the transitions between states belonging to different multiplets (AF = +1) are
called strong field transitions (SF'T), though the static field is typically smaller or of the
same order as the critical field. As Fig. 3.15b shows the strong field transitions are well
separated at frequencies above 350 MHz and various transitions can be made within the
same transition unit by varying the magnetic field strength.

Next, we wrote a computer code to simulate RF transitions by numerically solving
the time-dependent Schrodinger equation. With this code extensive calculations were
performed for both the MFT and SFT to study various transitions at different configu-
rations.

For example, calculations were performed for the SF'T using the following procedure.
All the initial occupation numbers ny’s of hyperfine states |k) are set to the configuration
under study, namely, ny = ny = nz = 1/3 and ny = ns = ng = 0. We then compute the

transition by iterating the Schrodinger equation

ih 1) = HUNE) = (Hua(t) + Hae(®)) ) (3.36)
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Figure 3.14: RF transition matrix elements of deuterium as a function of the reduced
static field. All possible single-photon transitions are shown. The two dots show the field
strength at which our SF'T (2-6 and 3-5) operates.
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|1} is expressed in the basis |k) of Hy,t as

) = > an(t) k), (3.37)

k

where the expansion coefficients ¢ (t) are the time-dependent probability amplitudes to
be solved. This basis is updated after each iteration according to expression 3.26 taking
into account the small change of the static field experienced by the moving atom. By
definition, the population of a hyperfine state is ng(¢) = |ci(¢)]* . The computation
starts at z;, = 0 cm and ends at z,,; = 5 cm. The RF field amplitude Brp(z) is taken to
be Gaussian distributed along the path z inside the unit and rapidly decreases outside
this region. The direction of the RF field is chosen to be parallel to that of the static
field B(z) so that the requirement of a o-transition is satisfied. The static field follows
a straight line of given slope dB/dz = 0.1 mT/cm (the sign of the slope turns out to
be irrelevant), while the central value By = B(z ~ 2.5 cm) of the static field is set such
as to satisfy the resonance condition for the examined transitions (By = 3.9 mT for 2-6
and By = 11.69 mT for 3-5) at the chosen radio frequency v = 378 MHz. The calculated
efficiency of the transition, ¢, is then defined as the final occupation ns(zgu)-

Fig. 3.16 (top) shows the results of such a calculation for the SF'T 3-5 transition with
a 0.05> mT maximum RF field amplitude. It is seen that both hyperfine states 1 and
2 are unaffected, while e3_5 is almost 100% within the given 5 cm distance of the SFT
unit. Similar calculations for the MFT 1-4 transition are shown in Fig. 3.16 (bottom).
Here, the calculation assumes that the atoms are initially only in hyperfine state 1, and
the RF field direction is chosen along the z-axis with a maximum amplitude of 0.05 mT
and a frequency of 10 MHz. The B(z) is chosen to have a central value of 0.8 mT and a
slope 0.14 mT/em. It can be seen that the 1-4 transition is actually performed by three
consecutive transitions, 1-2, 2-3 and 3-4, such that overall the transition behaves like a

1-4 transition and the states 2 and 3 are not affected.

3.4.4 Principle of polarimetry

In an internal target experiment a source delivers polarized particles into a window-
less conductance limiter through which the circulating beam passes. Target depolariza-
tion mechanisms originate from the limitations of the source of polarized particles, the
storage-cell environment, and beam-induced depolarization effects. Thus, it is impera-
tive to develop reliable, fast and accurate polarimetry methods to monitor the target
polarization.

The polarization of the injected atoms will be less than 100% due to inefficiencies of the
polarizing devices. In addition, due to non-unity of the degree of dissociation, there will be
molecules injected into the storage cell. These molecules are unpolarized and will dilute

the target polarization. Furthermore, the storage cell will receive a contribution from
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unpolarized background gas, mainly molecules from the ABS and the target chamber.
Additional polarization losses can originate from the finite magnetic holding field applied
over the storage cell, the magnetic fields induced by the circulating beam bunches [106],
and from spin-exchange collisions [107]. Finally, the interaction with the cell walls can
be an important source of depolarization inside the storage cell [108, 109]. Such losses
are suppressed by using suitable wall coatings and it has been demonstrated that Teflon-
coated cells are comparably better than cells of bare aluminum [109]. If such cell coatings
are used, then the stability of the coating, e.g. against radiation damage in an electron
storage ring, has to be understood.

We consider two polarimetry schemes here. One of the methods, the corresponding
apparatus is called the Rabi polarimeter, is based on sampling the target gas and relies
on the hyperfine coupling in order to infer the nuclear polarization. As was shown in
Fig. 3.13, polarized atoms will be either focused or rejected when they pass through a
sextupole magnet. Therefore, by placing a sextupole magnet and consequently analyzing
the intensity of the sampled atoms, one can obtain information on the nuclear polarization
of the sampled gas®.

The other method is based on the analysis of ions which were extracted from a storage
cell placed in an electron storage ring. This ion-extraction method takes advantage of
the ionization of atoms and molecules by the electron beam passing through the target
cell. The number of ions produced along the storage cell is directly proportional to
the local target density and the beam current. The polarization measurement samples
the target in exactly the same manner as the nuclear or particle physics experiment
under consideration. Furthermore, by uniformly extracting these ions from the cell,
measuring their atomic and molecular fractions, and by directly determining their nuclear
polarization, one can obtain the effective target polarization independent of its spatial
and temporal variations.

This can be seen as follows. The average target polarization can be expressed in our

polarimetry experiment by

(P)por = [ 1(2)pp(2) Por(2) d, (3.38)
while in our scattering experiment we have
(P = [ Lepp(2)P-(2)0(:)S(2) . (3.39)

Here o(z) is the cross section of the reaction and S(z) the phase space of the detection

system. The double brackets denote the experimental measured values. In our scattering

°In the HERMES experiment [25] a more elaborate scheme is used consisting of per-
manent sextupole magnets and RF transition units.
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experiment, o(z) and S(z) all have little dependence on the target z-position which allows
that they can be factorized from the integral. Therefore, the measured asymmetry in our

scattering experiment can be expressed by

/ Lpp(2)P..(2)0(2)S(2)A(2) d=

)
((P))asym
/ Lpp(2)P..(2)0(2)8(2)A(2) d=

(P - [ o()5(2) dz

({(A))asym =
(3.40)

One sees that in this case a measurement of the total target polarization ((P))pel is
sufficient. Only in case of a strong z-dependence in o(z) and/or S(z), Eq. 3.40 starts
to break down. Then, one would need to measure the ‘differential’ target polarization
P..(z). For our experiment the function o(z)S(z) is only slightly z-dependent (see Fig.
3.4, 6.10 and 6.13).

When performing an electron scattering experiment with a polarized internal target,
a small fraction of the target gas in the storage cell is ionized. At the electron energy
of 565 MeV used in our experiment, the ionization cross section for deuterium atoms
amounts to 1.3 x 107! ¢m? [110, 111]. Therefore, a sufficient number of ions can be
extracted from the cell (up to 75 nA in the present experiment) which allows for an
accurate mass and polarization analysis within a reasonable amount of time (minutes).
The interaction time of a high-energy electron with an atom is in the order of 3 x 107! s,
sufficiently fast that the nuclear polarization is preserved [112] in the ionization process.
The momentum transfer during ionization is small, so that the transverse momenta of
the ions are dominated by thermal motion. By applying a strong longitudinal magnetic
field, these ions can be confined and extracted from the storage cell. This magnetic field
not only provides the trapping force for the ions, but also defines the target spin and
polarization. Note that for a continuous-wave electron beam, the space charge of the
electrons provides an additional confining force for the ions.

Fig. 3.17 schematically shows the axial ion-extraction system and the electrostatic
field distribution for this cylindrical lens configuration. On one side of the storage cell,
ions are repelled by a lens at a positive voltage (+100 V with respect to the cell). On
the other side, ions are extracted and accelerated using three consecutive lenses. A
longitudinal 30 mT magnetic field is applied over the cell region in order to prevent
the ions from hitting the cell walls. The simulation code SIMION [113] was used for
the geometrical and electrostatic design of the lenses. Calculated trajectories are shown
for low-energy ions (~0.3 eV) with an arbitrary angle and position on the central axis
of the cell. For optimal ion extraction, the voltages on the three extraction lenses are
Ver,=—200V, Vgr,,=—800 V, and Vgr,=—2500 V. It is clearly seen that the extracted

ion beam can be transported downstream for subsequent polarization analysis.
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Figure 3.17: lon extraction from a storage cell using cylindrical lenses. The equipoten-
tial curves and the ion trajectories were calculated with SIMION. RL corresponds to a
repeller lens, while EL;_3 constitute a triplet of extraction lenses. Note that the storage
cell has a 15 mm diameter and a 400 mm length.

Once the ions are extracted, they can be accelerated to an energy suitable for an
appropriate polarimetry reaction. To measure deuteron tensor polarization, the reaction
3H(g,m)oz can be employed. Here, the neutron angular distribution is related to P,, and

is given by
n(f) oc 1 — £PZZ(3 cos® 0 — 1), (3.41)

where 6 is the angle of the outgoing neutron with respect to the deuteron spin direction,
and f = 0.959 4+ 0.006 for 51 keV deuteron energy [114].

For hydrogen and deuterium targets, it is essential to determine the atomic fraction &,
since the molecules provide a background which in general dilutes the target polarization.
Hence, a mass analyzer is needed. For example, an E x B velocity filter, a so-called Wien
filter, can be employed. In case of unpolarized molecules, the total polarization of the

target species can be expressed as

np

tot __
b = np + 2np
2

P,(D%) = ¢P,, (DY), (3.42)

where n represents the target density and P,, (D7) the tensor polarization of the DT ions.

In summary, all the considerations discussed here were essential for the design of our

target. In the next chapter we will show the setup that was realized for our experiment.



