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Abstract

In this document I will brie�y describe my �rst attempt to determine the transverse asymmetry AT ′ in
3 ~He(~e, e′) quasi elastic scattering. This asymmetry is sensitive to the neutron magnetic form factor Gn

M . In

my analysis I will use Q2 = 0.3(GeV/c)2 data, measured during the E05-102 experiment in Hall A at JLab.

I will compare my results with the results from the experiment E95-001, where they measured Gn
M with very

high precision.

1 Introduction

The electromagnetic form factors represent a very interesting topic in nuclear physics, because they contain
the information about the distribution of charge and magnetization within nucleons. Knowing the form factors
allows us to test various nucleon models based on quantum chromodynamics. This advances our knowledge of
nucleon structure and provides a basis for the understanding of strongly interacting matter in terms of quark
and gluon degrees of freedom.

We can not measure the neutron electromagnetic form factors directly, but need to determine (extract) them
from the measured nuclear cross-sections. For unpolarized elastic electron scattering o� a nucleon, the cross
section can be written as [1](

dσ

dΩ

)
=
(
dσ

dΩ

)
Mott

·
[
G2

E(Q2) + τG2
M (Q2)

1 + τ
+ 2τG2

M (Q2) tan2 θ

2

]
. (1)

The Mott cross-section describes the elastic scattering o� a point-like particle, θ is the scattering angle and
τ = Q2

4M2c2 . Functions GE(Q2) and GM (Q2) are the electric and magnetic form factors, both of which depend
upon Q2. The measured Q2-dependence of the form factors gives us information about the radial charge distri-
butions and magnetic moments.

For the proton, (1) can be measured and applied directly. In order to determine proton form factors Gp
E

and Gp
M we can observe electron scattering o� the hydrogen target, which is a pure proton target. On the other

hand, there are no free neutron targets. Consequently the neutron form factors Gn
E and Gn

M can not be measured
directly as in (1) and are thus known with much poorer precision. In last couple of years a lot of e�ort has been
put into a more precise determination of the neutron form factors.

A very nice approach to the precision measurement [2] of Gn
M is through the inclusive quasielastic reaction

3 ~He(~e, e′). A polarized 3He target is very useful for studying the neutron structure, because its ground state
is dominated by a spatially symmetric S wave in which proton spins cancel and the spin of the 3He nucleus is
carried by the unpaired neutron (see �gure 1).

In the case of polarized beam and polarized target, the cross-section for the 3 ~He(~e, e′) reaction has the gen-
eral form

dσ(h, ~S)
dΩedEe

=
dσ0

dΩedEe

[
1 + ~S · ~A0 + h(Ae + ~S · ~A)

]
, (2)
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Figure 1: Three ground state con�guration of the 3He.

where σ0 is the unpolarized cross-section, ~S is the spin of the target and h is the helicity of the electrons. The
~A0 and Ae indicate the asymmetries induced by the polarization of only the target or only the beam, while ~A is
the asymmetry when both the beam and the target are polarized [3]. The target quantization axis is chosen to
be along the direction of momentum transfer. We will focus on the asymmetry ~A of which only two components
Ax,z are non-zero in coplanar geometry with the spin aligned in the scattering plane:

Ax,z =
[dσ++ + dσ−−]− [dσ+− + dσ−+]
[dσ++ + dσ−−] + [dσ+− + dσ−+]

, where


Ax :

(
~Sx ⊥ ~q

)
Az :

(
~Sx ‖ ~q

) (3)

The (±,±) signs represent the beam helicities and the projections of the target spin along the quantization axis
(x for Ax and z for Az). Asymmetries Ax and Az must be measured separately since they require di�erent spin
orientations. Following this four-fold spin sequence, possible systematic uncertainties and contributions from ~A0

and Ae can be greatly suppressed. This is the beautiful thing about this type of measurement.

From the theory it follows that the inclusive transverse asymmetry At′ = Ax in the vicinity of the 3He quasi-
elastic peak is most sensitive to the neutron magnetic form factor. In the �rst order plane-wave impulse approx-
imation (PWIA) the transverse asymmetry At′ can be written as [2]

At′ ∝
(Gn

M )2

a+ b(Gn
M )2

, (4)

where at low Q2 the parameter a is much larger than b(Gn
M )2. Figure 2 shows the transverse asymmetries at

di�erent Q2 that were measured in the E95-001 experiment. From these results we then determine how neutron
magnetic factor depends on the Q2. The �nal results are shown in �gure 3.

2 Transverse asymmetries from E05-102 data

In the experiment E05-102 we were measuring double-polarized asymmetries in following exclusive reaction chan-
nels 3 ~He(~e, e′d), 3 ~He(~e, e′p) and 3 ~He(~e, e′n). For the measurement of the neutron channel (e, e′n) we were using
the neutron detector (HAND) in coincidence with the Right High Resolution Spectrometer (HRS-R). For the
(e, e′p) and (e, e′d) channels we were using the BigBite Spectrometer in coincidence with the Left High Resolution
Spectrometer. The purpose of this measurement is to test the state-of-the-art Faddeev calculations of the three-
body system [3] and to study the S′-state and D-state contributions to the 3He ground-state wave-function.

Once we are ready to extract the beam-target asymmetries Ax and Az, we need to make sure that proce-
dures, algorithms, cuts, etc. work properly, so that asymmetries and conclusions that we will draw from them
will be real. One way is to compare the analyzed data with the theory. This is not easy due to the complexity
of the theoretical results that we poses. By doing that we are also biased, because we will be correcting our
potential mistakes until measuremens and theory will agree. This is not right since we are searching for the
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Figure 2: The transverse asymmetry AT ′

in Q2 = 0.1 − 0.6(GeV/c)2 measured dur-
ing the E95-001 experiment [2]. The ex-
periment was carried out in Hall A at
the Thomas Je�erson National Acceler-
ator Facility (JLab), using a longitudi-
nally polarized continuous wave electron
beam of 10µA current incident on a high-
pressure polarized 3He gas target. The
beam and target polarizations were ap-
proximately 70% and 30%, respectively.
Six kinematic points were measured cor-
responding to Q2 = 0.1 to 0.6 (GeV/c)2

in steps of 0.1(GeV/c)2. An incident elec-
tron beam energy Eb = 0.778GeV was em-
ployed for the two lowest Q2 values of the
experiment and the remaining points were
completed at Ei = 1.727GeV . To maxi-
mize the sensitivity to AT ′ , the target spin
was oriented at 62.5o to the right of the
incident electron momentum direction.

Figure 3: The neutron magnetic form
factor Gn

M in units of the standard
dipole form factor (1 + Q2

0.71 )−2, as
a function of Q2, along with previ-
ous measurements and theoretical mod-
els. Lines represent various theoretical
models[2].

true physical asymmetries and not those that agree with the theoretical models. Therefore it would be better
to check our analysis somehow di�erently.

It is better to compare our measurements with some other data. The idea is to use the same procedure, as
we will use on the exclusive channels, on our inclusive data 3He(e, e′). From them we should be able to recon-
struct the Gn

M asymmetries from the E95-001.
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Figure 4: The �gure shows open detec-
tor hut of the HRS-L spectrometer with
the detector packages and electronics in
it.

In this report I will describe my �rst attempt to determine the quasi-elastic asymmetries from our data. This is
an initial step in our analysis and will represent a sanity check rather than being a serious analysis. There is a
lot of work that needs to be done, like spectrometer and target calibration, before we will be able to determine
accurate asymmetries.

Before we can proceed with the calculation of the asymmetries, we �rst need to determine and check some
other, more basic quantities. We �rst need to know how the beam and target polarization was changing during
the experiment and what was the target polarization orientation, the dilution factors, collected charge and dead
time during each run. All these parameters a�ect our �nal results, and each of these elements requires a detailed
analysis. In this report I will present the results of the �rst-pass analysis of each of these corrections.

2.1 Target Polarization and ~B orientation

In the experiment we were using a high-pressure polarized 3He target. The target system consists of a moving
target ladder with various targets attached to it, a holding magnetic �eld system, heating system and a laser
optics system. Beside the polarized 3He target we were also using a carbon 7-foil target for the optical calibration
of the spectrometers and an unpolarized (reference) gas target. We were able to put various gases (3He, D2,
N2, H2) at various pressures into this cell and used it for the determination of the dilution factors.

Our polarized 3He target is made of a 40cm long glass cell (see �gure 5) �lled with a high pressure 3He gas
(7.93 amg1) and a small amount of vapor of rubidium-potassium mixture. The target employs the so-called spin-
exchange optical pumping technique. 3He is polarized in a two-step process. First, rubidium vapor is polarized
by optical pumping with circularly polarized 795 nm laser light. Second, the polarization of the Rb atoms is
transferred to the 3He nucleus in spin-exchange collisions, in which 3He nuclei are polarized via the hyper�ne
interaction. In addition, target also contains a small amount of nitrogen to increase the pumping e�ciency.

Experiment required a �exible alignment of the target polarization vector parallel to (for Az asymmetry) and
perpendicular to (for Ax asymmetry) the direction of the momentum transfer ~q. We are using three Helmholtz
coils to rotate and hold the polarization in any chosen direction (see �gure 6). Unfortunately, we can optically
pump only in three directions : longitudinal, transverse and vertical. If we want a polarized target in an arbitrary
direction we �rst have to polarize it in one of these three directions and then rotate it to the chosen direction.
Unfortunately without constant pumping the polarization rapidly decreases and can be used for only a few hours.
Afterwards, when the polarization would drop too much, we would have to rotate the target again to its original
direction to restore the polarization. This takes approximately four to eight hours and in the meanwhile the

1An amagat is a practical unit of number density. Although it can be applied to any substance at any conditions, it is de�ned
as the number of ideal gas molecules per unit volume at 1 atm [?].
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Figure 5: Left: Polarized 3He cell mounted on the target ladder inside the target enclosure. Right: Schematics
of the target cell. It consist of two main parts: the oval main target cell, which is put into the beam line and
where the reactions happen, and a spherical pumping chamber (positioned outside the beam line ) where incident
laser light hits the 3He gas and polarizes it.

Figure 6: Left: Target enclosure with target ladder and three pairs of Helmholtz coils (red stripes). Right:

Shematic representation of the Helmholtz coil orientation with respect to the beam direction.

polarized target can not be used with beam. Therefore we decided not to measure the asymmetries Az and Ax

directly, but to measure the asymmetries AL (target spin oriented along the beam line) and AT (target spin
oriented perpendicular (to the right) of the beam direction) and post-festum determine the true asymmetries by
using the rotations: (

Ax

Az

)
=
(

cos θq sin θq

− sin θq cos θq

)(
AL

AT

)
, (5)

where θq is the in-plane angle between the direction of the incident beam and the momentum transfer ~q. Figure 7
shows how the currents in all three Helmholtz coils were changing during the experiment. This directly corre-
sponds to the orientation of the �eld and the target spin. In the experiment E05-102 we were only interested
in the two in-plane asymmetries and did not measure the asymmetry with the vertical orientation of the spin.
Therefore the current in the vertical coil was always constant. We switched between the longitudinal and trans-
versely polarization several times. In the longitudinal direction we were able to polarize only in the direction
along the beam (Longitudinal +). Optical pumping in the opposite direction (Longitudinal -) was not possible
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because of the limits of our optical system. In the transverse direction, however, we were able to polarize target
in direction to the right of the beam (Transverse +) as well as in direction to the left of the beam (Transverse -).

Figure 7: Currents in all three Helmholtz coils (and corresponding �eld orientations) during the experiment.

The target polarization Pt was monitored with a nuclear magnetic resonance (NMR) system. The response
of the NMR system for 3He has been calibrated with the NMR measurements on water. The calibration was
also independently veri�ed by measurements of the frequency shifts in the lines of electron paramagnetic reso-
nance (EPR) caused by polarized 3He nuclei. The water cell calibration test were made at the beginning of our
experiment, while the EPR measurements on polarized 3He target were made approximately once a week. NMR
polarization measurements were made every two to four hours (this means approximately after every eighth run),
depending on the beam current, orientation of the target and a kind of measurements that were we performing at
the moment. Plot 8 shows how target polarization changed during the experiment. The maximum polarization
was approximately 66% and was reached for the longitudinally polarized target.

3 Target Cell Wall Subtraction

When estimating the asymmetries we need to consider many corrections that can a�ect our �nal result. A small
but not negligible correction is the target-cell-window correction. Incident electrons scatter on the 3He atoms
as well as on the atoms of the glass windows on the each side of the cell. The �rst thing that we can do is of
course a cut around the glass windows, and consider only the interior of the cell. This way we get rid of the
majority of the contamination with the glass. However, the tails of the window distribution can reach deep into
the interior of the cell and that also needs to be considered. To determine this factor I took an empty cell (no
gas in the reference cell) run and compared it with the production run. Since the collected charge and dead time
can be di�erent for each run I had to renormalize one of the runs so that I was then able to compare them. I
decided to renormalize the empty-cell run in a way that positive-TgY peaks (see �gure 9), which correspond to
the entrance window, have the same amplitude. I have argumented this choice with the fact that the number of
scattered electrons from this window does not depend on the content of the target behind the �rst window. For
the exit-window this is of course not true. After the renormalization I subtracted the empty-cell run from the
production run and the plot that I got should represent the pure helium target. Then I compared this plot with
the full production run, using the ratio:

R(ytg) =

∫ ytg

−ytg
HPure He(x)dx∫ ytg

−ytg
HFull He(x)dx

(6)
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Figure 8: Target polarization during the experiment. Polarization values in this plot are direct readouts from
the NMR polarization measurement system. These measurements were done approximately every eight runs.

where ytg represents the distance from the target center and H(ytg) is the value of histogram at ytg. From plot 10
we can see that within the majority of the target this correction is less than a percent. Therefore this correction
will not a�ect our asymmetries very dramatically.

3.0.1 Polarized 3He target vs. Reference Cell with 3He

The correction factor that will have the biggest e�ect on our asymmetries is the nitrogen dilution factor. There
are two ways to determine this factor and in the end they both should agree. In the �rst one we could compare
the helium production run with the calibration runs where we had nitrogen in the reference cell. By knowing
the correct nitrogen pressure we can directly extract the nitrogen dilution factor, by preforming the same ratios
as we did for the target-window correction. Unfortunately at the moment we do not know the correct nitrogen
pressure, because it still needs to be determined.

The other procedure is the exact opposite. Instead of nitrogen we put 3He in the reference cell and com-
pare the yield with the polarized production run. Since we have only pure helium in the reference target we can
determine the dilution factor by subtracting the two runs. Plots 11 and 12 show the results of this comparison.
We can see that according to our measurement the dilution factor is approximately 10%. In our experiment we
put approximately 150psi of 3He in the reference cell, while at the moment we believe that the partial helium
pressure in the production cell is 109psi. This introduces additional factor of 1.4 to the determined dilution
factor, assuming that 3He yield in the reference cell rises linearly with the pressure. In the end this gives a
dilution factor of: fnitrogen = 1 + 51% = 1.51.

3.1 Beam properties

During the (e′d) experiment we were using a longitudinally polarized continuous electron beam with an energy
of 2.4 GeV (second pass beam). The beam helicity was �ipped with frequency ≈ 30 Hz. When using a polarized
beam we want to be sure that the beam charge asymmetry is as small as possible or at least smaller than the
asymmetries that we are lookong for, so that we do not introduce some false asymmetries to our measurements.
For that purpose we were measuring the beam charge asymmetry during the whole experiment (see �gure 13)
and according to our measurements is was smaller than (500ppm) throughout the whole experiment. In this
experiment we took approximately one half of the runs with the beam half-wave plate in and another half with
beam half-wave plate out. This plate is inserted in the injector in front of a laser that hits the photo-cathode from
which initial polarized electrons are emitted before being accelerated. The position of this plate is independent
of any settings in the experimental hall and is a good sanity check to see if our apparatus works properly. If
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Figure 9: The red line represents the target ytg coordinate for the production 3He run, the blue line represents
the ytg coordinate for the empty-cell run and the black line represents the di�erence between the two. In this
case the empty cell run was normalized to the amplitude of the right peak. I have also tried another approach,
where I normalized the empty-cell run to the slope at the beginning and at the end of the target (green line),
but did not decide to use it. In that case the cyan line represents the pure helium yield.

there is no other change made to the experimental con�guration when the position of the λ/2-plate is changed
(in/out) all our physical asymmetries should �ip. Plot 14 shows how the position of the λ/2-plate was changing
during the experiment.

The polarization of the beam was measured independently with Møller and Compton polarimeters. During
the experiment we did only three Møller measurements, because it takes approximately four hours to do such
measurement (see �gure 15). According to this measurements the beam polarization was approximately 88%.
The Compton polarimeter was working through the whole experiment but we still do not have the polarization
results from it due to the problems with polarimeter. Therefore at the moment we need to rely on the Møller
measurements.

3.2 Analysis Results

Now that we have covered all the basics, we can proceed and �nally try to calculate the asymmetries. Determi-
nation of the polarization is fairly simple, once everything is properly calibrated (database �les contain correct
parameters so that optics modules worcorrectlyty) and appropriate cuts are used. In this analysis I have used
only the most basic cuts:

• |yTg| ≤ 0.025 : With this cut I limit my analysis only to those events that come from the middle portion
of the target cell, where I am certain that I will not have problems with the e�ects near the boundaries.

• DL.eventtypebits&8 == 8 : In our experiment we were using di�erent triggers each describing a partic-
ular type of events. We caseparatete all the recorded events by the triggers that were accepted for that
particular event. All the accepted triggers are recorded in the DL.eventtypebits variable. We set various
prescale factors to our triggers and consequently all triggers are not recorded every time. If we are trying
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Figure 10: Top: The integral of the Target ytg histogram as a function of the distance from the target center.
Red line corresponds to the full 3He run while the black line prepresents the integral of the pure helium response.
Bottom: The ratio between the pure helium yield (3HePol.−Empty Cell) and a complete polarized target yield.

to determine the inclusive asymmetry from the 3He(e, e′) reaction we are interested only in thoseventsts
that were seen by the spectrometer, that was used for the detection of scattered electrons (HRS-L). Every
time the electron-arm was hit we got a T3 triggerer , which set the third bit in the DL.eventtypebits

variable to one. Because we are interested in all the events with a valid T3 trigger we use logical masking
to extract events with the third bit set to one.

• |δTg| =
∣∣∣p−pcentral

pcentral

∣∣∣ < 0.045 : This cut corresponds to the momentum acceptance of the HRS-L spectrom-
eter.

• |θTg| < 0.06 and |θPh| < 0.03 : These two cuts represent the angular acceptance of the HRS-L spectrometer.

For each recorded event that passes the cuts I than determined ω and Q2 and a product of the beam helicity
and a target spin orientation:

h′target&spin = hbeam × starget =


(+)× (+) = 1
(+)× (−) = −1
(−)× (+) = −1
(−)× (−) = 1

(7)

For the calculation of the momentum transfer four-vector I used the standard functions that are included in our
analysis software. Since our optics is not optimized yet the ω and Q2 are not determined precisely, but they are
good enough for our analysis. I have then divided the whole range in ω ∈ [70, 250] into 18 equivalent regions
and counted how many events with h′ = 1 and how many with h′ = −1 fall into each ω-region. From there I
was than able to calculate the raw experimental asymmetry for each region using the formula:

Ai
exp =

N+
i

Q+f+
d

− N−i
Q−f−d

N+
i

Q+f+
d

+ N−i
Q−f−d

. (8)
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Figure 11: The red line represents the target ytg coordinate for the production 3He runs, the blue line represents
the ytg coordinate for the reference-cell run with 135psig = 150psi = 10.3bar of 3He and the black line represents
the di�erence between the two.

Index i = 1...18 denotes a speci�c omega region and f±d is de�ned as

f±d = 1 +
t±d
t±

(9)

where t±d represents the dead time and t± total measuring time with ± beam helicity. It is not necessary that
the same number of electrons in states h′ = 1 and h′ = −1 hits the target. We consider that by normalizing the
number of counts with the collected charge Q± in each state. Asymmetry must also be corrected for the dead
time, which is also not necessarily the same for both states. However, looking at the run summary below we can
see that the di�erences between the dead times and collected charges for both helicity states are very small and
can be neglected in this analysis.
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Figure 12: Top: Plot shows the integral of the Target ytg histogram as a function of the distance from the target
center. Red line corresponds to the full 3He run while the black line prepresents the integral of the nitrogen, that
is contained in the production cell. Bottom: The ratio between the nitrogen yield (3HePol.− 3HeRef.(135psig))
and a complete polarized target yield.

------------------------------ End-of-run Summary ------------------------------------------------
PRESCALE FACTORS:ps1=16777215 ps2=16777215 ps3=5 ps4=4 ps5=1 ps6=1 ps7=65535 ps8=100

EVENTS : [ 0]: 4004671 [++]: 0 [--]: 1979590 [+-]: 0 [-+]: 1966956
TIME : [ 0]: 33.010 mins [++]: 0.017 mins [--]: 16.290 mins [+-]: 0.017 mins [-+]: 16.298 mins

Test of Helicity gates
Time diff of helicity to nonhelicity times = 986.33221 seconds

LIVE calc. crudely accounts for correlations. Need offline calc.
DEAD TIME: [ 0]: 6.90% [++]: 0.00% [--]: 6.88% [+-]: 0.00% [-+]: 6.84%

APPROXIMATE BCM CHARGES (C)
BCM u1 [ 0]:0.0174 BCM u3 [ 0]:0.01739 BCM u10[ 0]:0.01539
BCM u1 [++]:0 BCM u3 [++]:0 BCM u10[++]:0
BCM u1 [--]:0.008575 BCM u3 [--]:0.008566 BCM u10[--]:0.00758
BCM u1 [+-]:0 BCM u3 [+-]:0 BCM u10[+-]:0
BCM u1 [-+]:0.008571 BCM u3 [-+]:0.008566 BCM u10[-+]:0.00758
------------------------------------------------------------------------------------------------------

Our �nal formula for the calculation of the Asymmetry is then:

Ai
exp =

N+
i −N

−
i

N+
i +N−i

. (10)

Now we need to consider that the measured asymmetries are smaller than the true physicaasymmetrieses because
the target and beam are not 100% polarized and because of the nitrogen dilution. The physical asymmetry can
be calculated as:

Ai
physical =

Ai
exp

PtargetPbeam
× fnitrogen (11)

We would also like to determine the error of thasymmetryry. It can be written as:

∆Aexp =
1−Aexp√
N+ +N−

≈ 1√
N
, (12)
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Figure 13: Plot shows the readout values from the Happex system, that measured the beam charge asymmetry
at di�erent times during the experiment.

Figure 14: Position (IN or OUT) of the beam half-wave-plate during the experiment.

where we assume that the asymmetries that we measure are small and consequently:

∆Aphysical =
∆Aexp

PtargetPbeam
× fnitrogen (13)

In this analysis I have analyzed approximately 200 runs. For each run I have calculated the asymmetries for
all ω-regions. When all the data were analyzed I calculated the mean asymmetry and the error of the these
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Figure 15: An example of a Møller measurement results.

asymmetries. I have done this analysis for three sets of data. First two sets were both Q2 ≈ 0.3(Gev/c)2 data
from the HRS-L spectrometer but one set was measured with the beam half-wave plate IN while the other was
measured with the half-wave plate OUT. As mentioned before it is useful to check if the asymmetries �ip when
the position of the HWP is changed. The third set contained the Q2 ≈ 0.4(Gev/c)2 data measured with the
HRS-R.

My results are shown in �gures 16 to 21. I have compared my results with the Gn
M asymmetries and the

results agree surprisingly well. I should stress that these results should not be taken tseriouslyly at the moment
because this is only a quick estimate. However, the thing that we can learn from these results is that the asym-
metries do change when the HWP state is changed and that they have the correct sign and follow the correct
trend. This gives us more faith in our data.

Figure 16: Left: ω vs. Q2 plot for the Q2 = 0.3(GeV/c)2 data. Right: ω vs. Q2 plot for the Q2 = 0.4(GeV/c)2

data.
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Figure 17: The calculated asymmetries At′ inside each ω-region for all Q2 = 0.3(GeV/c)2 data with HWP-In.
The central values of each region are : ω = 80.0, 90.0, 100.0, 110.0, 120.0, 130.0, 140.0, 150.0, 160.0, 170.0, 180.0,
190.0, 200.0, 210.0, 220.0, 230.0, 240.0, 250.0MeV.
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Figure 18: The calculated asymmetries At′ inside each ω-region for all Q2 = 0.3(GeV/c)2 data with HWP-Out.
The central values of each region are : ω = 80.0, 90.0, 100.0, 110.0, 120.0, 130.0, 140.0, 150.0, 160.0, 170.0, 180.0,
190.0, 200.0, 210.0, 220.0, 230.0, 240.0, 250.0MeV.
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Figure 19: The calculated asymmetries At′ for the Q2 = 0.3(GeV/c)2 data as a function of ω. I compared my
results with the Gn

M asymmetries at di�erent Q2. Since I did not perform any cuts on Q2 my Q2 region is
much broaderThereforere my asymmetries are probably weighted combination of Gn

M 's Q2 = 0.3(GeV/c)2 and
Q2 = 0.4(GeV/c)2 asymmetries.
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Figure 20: The calculated asymmetries At′ inside each ω-region for all Q2 = 0.4(GeV/c)2 data with HWP-Out.
The central values of each region are : ω = 100.0, 110.0, 120.0, 130.0, 140.0, 150.0, 160.0, 170.0, 180.0, 190.0,
200.0, 210.0, 220.0, 230.0, 240.0, 250.0, 260.0 ,270.0, 280.0, 290.0, 300.0MeV.
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Figure 21: The calculated asymmetries At′ for the Q2 = 0.4(GeV/c)2 data as a function of ω. I compared my
results with the Gn

M asymmetries at di�erent Q2. Since I did not perform any cuts on Q2 my Q2 region is
much broaderThereforere my asymmetries are probably weighted combination of Gn

M 's Q2 = 0.4(GeV/c)2 and
Q2 = 0.5(GeV/c)2 asymmetries.
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