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In this short report I will brie�y explain how I �t the elastic data and calculate the beam energy. The
momentum (energy) of the scattered electrons detected in the spectrometer is given by:

E′ = pc(1 + δ) + ∆E1 =
E0 −∆E0

1 + E0+∆E0
M (1− cos θ)

, (1)

where pc is the spectrometer constant (i.e. central momentum of the spectrometer), E0 is the true beam energy
and θ is the scattering angle. We also need to consider that incoming electron loses some energy in the target
before the reaction and that outgoing scattered electron loses its energy on its way out of the target. I have
labeled these two energy losses with ∆E0 and ∆E1.

We will use formula (1) to �t our experimental data. With it we would like to determine the beam energy
for the given set of experimental data. However, before doing that we need to consider that beam energy was
not constant but was changing during the whole run period. In order to calculate the true value of the beam
energy, we need to correct our measurements for these small variations in beam energy. We have done that by
introducing additional term ∆ET , which represents the beam energy di�erence between a current and a golden
run. This in the end gives us:

E′ = pc(1 + δ) + ∆E1 =
E0 + ∆ET −∆E0

1 + E0+∆E0
M (1− cos θ)

, (2)

We have estimated the beam energy di�erence ∆ET from the Tiefenbach data. We have chosen a golden run
(the choice is of course arbitrary) and set its Tiefenbach value as a golden one. Then we calculated all energy
di�erences ∆ET relative to this value.

Now we can go a step further and try to modify equation (2) a bit in order to simplify our �tting procedure.
If we would use it in current form we would have to �t our data point-by-point, which is a bit more di�cult
than �tting a continuous function. Since energy losses are ∆E0,1 < 2 MeV and beam energy di�erences are also
∆ET < 1 MeV, which is much smaller than the beam energy, we can expand our equation (2) into Taylor series:

E′ =
E0

1 + E0
M (1− cos θ)

+
E0κ

1 + E0
M (1− cos θ)

+
∆̂E0κ

1 + E0
M (1− cos θ)

+
∆̂E0κ

1 + ∆̂E0κ
M (1− cos θ)

, (3)

where ∆̂E0 = ∆ET + ∆E0 and κ is de�ned as:

κ =
d∆E
M (1− cos θ)

1 + E0
M (1− cos θ)

≈ 3× 10−5 (4)
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Equation (3) can be further written as:

E′ =
E0

1 + E0
M (1− cos θ)

+
E0

1 + E0
M (1− cos θ)

∆̂E0

M
(1− cos θ) + ∆̂E0 −

∆̂E0E0

M
(1− cos θ)

≈ E0

1 + E0
M (1− cos θ)

+ E0
∆̂E0

M
(1− cos θ)− E0

E0

M
(1− cos θ)

∆̂E0

M
(1− cos θ)︸ ︷︷ ︸

≈2×10−3 MeV

+∆̂E0 −
∆̂E0E0

M
(1− cos θ)

≈ E0

1 + E0
M (1− cos θ)

+ ∆̂E0 (5)

In the end we can arrange our formula in following way:

pc(1 + δ) + ∆E1 + ∆E0 −∆ET =
E0

1 + E0
M (1− cos θ)

(6)

Equation (6) allows us to correct our measured data points for energy losses and changes in beam energy
before �tting the data. This way we can use Root/Analyzer to �t points with the TGraph class and do not need
to write our own �tting algorithm. If we would use equation (2) we would have to write our own program for
the χ2 minimization and determination of an error. This way Root does all the hard work for us.
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